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Abstract

With rapid advances in the analysis of data from single-case research designs, 
the various behavior-change indices, that is, effect sizes, can be confusing. 
To reduce this confusion, nine effect-size indices are described and compared. 
Each of these indices examines data nonoverlap between phases. Similarities 
and differences, both conceptual and computational, are highlighted. Seven 
of the nine indices are applied to a sample of 200 published time series data 
sets, to examine their distributions. A generic meta-analytic method is pre-
sented for combining nonoverlap indices across multiple data series within 
complex designs.
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Nine Nonoverlap Techniques  
for Single-Case Research

Analysis of single-case research (SCR) data is receiving unprecedented atten-
tion in recent years, largely due to the need to support evidence-based inter-
ventions with an “effect size” or index of amount of improvement by the client 
(Jenson, Clark, Kircher, & Kristjansson, 2007; Kazdin, 2008; Odom, 2009). 
Greater attention is also due to the press for greater rigor in educational research 
by the Institute of Education Sciences (IES) that has recently targeted SCR 
methods (IES, 2010). The net impact is the rapid development of several 
types of analyses for SCR, including multilevel models (van den Noortgate & 
Onghena, 2003, 2008), advanced regression models (Allison & Gorman, 1993; 
Huitema & McKean, 2000), and simpler, distribution-free nonparametric 
models, notably data nonoverlap between phases (Ma, 2006; Parker & Vannest, 
2009; Parker, Vannest, & Brown, 2009).

The number of nonoverlap methods for SCR has increased considerably 
over the past decade, and these methods can be easily confused. The purpose 
of this article is to reduce potential confusion by describing them together, with 
comparisons. Some of these methods are very similar and some are closely 
related to other well-known statistical summaries. This is not intended to be 
a critical review. All nonoverlap methods share the benefit of being visually 
accessible and blending well with visual analysis of graphed data. In addition, 
all methods are “distribution free,” that is, not requiring parametric assumptions 
about data distribution or scale type.

Another asset of all nonoverlap techniques is their ease of use. They all can 
be calculated with a pencil and straightedge from a data plot. Some appear more 
complex than others but after initial practice prove to be user friendly for con-
sumers in schools and clinics. Greater complexity comes with calculating con-
fidence intervals and p values for nonoverlap indices, but these inferential tools 
are not needed for most lower stakes decisions. This article is directed to field 
practitioners who value visual analysis, so discussion of p values and confidence 
intervals is primarily limited to referring the reader to relevant tables or computer 
packages. Discussion of calculation methods derives mainly from our experience 
calculating the indices on hundreds of data sets over the past 6 years.

Nonoverlap indices are more robust than indices of mean or median level 
shifts across phases. A mean level comparison works well only when the mean 
and standard deviation are a good summary of the score distribution (Siegel 
& Castellan, 1988; Wilcox, 2010). However, when data are heavily skewed, a 
mean is rarely a good summary and a median is superior (Sheskin, 2007). But 
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even a median is not a good description for the odd-shaped data sets often seen 
in SCR (Scruggs & Mastropieri, 1998, 2001). SCR data may have no scores 
close to a calculated median and/or may have multiple modes. When neither a 
mean nor a median can fairly summarize a data set, a nonoverlap method is 
needed (Parker et al., 2009; Wilcox, 2010). Nonoverlap methods do not rely 
on means, medians, or modes but rather consider the individual values of all 
data points in pairwise comparisons across phases. Nonoverlap methods may 
be “complete,” that is, considering all data points equally, or not, for example, 
percentage of nonoverlapping data (PND; Scruggs, Mastropieri, & Casto, 1987), 
which relies only on one data point in Phase A (the highest). Nonoverlap methods 
may consist solely of nonoverlap or may mix nonoverlap with median calcula-
tion, for example, percentage of data points exceeding the median (PEM; Ma, 
2006), and the extended celeration line (ECL) method (White & Haring, 1980).

Despite their advantages, most nonoverlap methods (all but two of those 
reviewed in this article) have a distinct disadvantage, also borne by simple 
mean-shift and median-shift models: insensitivity to trend, especially positive 
baseline trend (Wolery, Busick, Reichow, & Barton, 2010). Most nonoverlap 
tests should not be applied indiscriminately to just any data series. Two data 
attributes should preclude applying simple nonoverlap methods: (a) presence 
of positive trend in the baseline phase and (b) presence of strong improvement 
trend in the intervention phase, which would be poorly captured by an index 
of level only (mean, median, or nonoverlap methods). The phrase “most non-
overlap methods” is used because two of the nine methods (the oldest and the 
newest) do consider data trend.

This article also highlights a relationship between several nonoverlap indices 
and established statistical tests. This topic may not interest all readers, but the 
relationships between nonoverlap and statistical tests argue for greater respect 
for the nonoverlap techniques by the broader research community. This may 
help correct the misunderstanding that nonoverlap techniques are synonymous 
with visual analysis; they are not. Connections between nonoverlap and estab-
lished statistical tests help defend visual analysis, which has long attended to 
data nonoverlap (Parsonson & Baer, 1978). It is obvious that visual judgments 
of trend and mean or median shift have statistical counterparts. But in the past, 
a statistical counterpart of visual judgments of non-overlap was not explicit. 
That has now changed, and this article seeks to remedy the misunderstanding.

Finally, this article offers rough guidelines for the values that can be expected 
from each nonoverlap index. Seven of the nine indices were applied to a con-
venience sample of 200 unscreened, published data sets, and resulting values 
are reported. Although this sample is not large enough to offer definitive 
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benchmarks, it can at least indicate which summaries tend to be higher and 
lower. General guidelines are already published for some of the indices but 
never together in one place nor calculated on the same corpus of data sets.

Besides the nine methods covered in this article, three additional SCR 
nonoverlap indices were not included. Percentage reduction data (PRD; O’Brien 
& Repp, 1990) was excluded because it is a parametric, mean-based method, 
rather than nonoverlap. Percentage of zero data (PZD; Scotti, Evans, Meyer, 
& Walker, 1991) was also excluded because of the fact that it fits only certain 
scales and goals. Last, the percentage of data exceeding a median trend (PEM-T; 
Wolery et al., 2010) was not covered because it is identical to the original 
“ECL or ‘split middle’ line” (White & Haring, 1980).

Nine Nonoverlap Indices
Eight of the nine nonoverlap indices, presented in order of their first publica-
tion dates, are depicted graphically in Figure 1 (computation methods for all 
indices are available in Table 1): (a) ECL or “split middle” line (White & 
Haring, 1980), (b) PND (Scruggs et al., 1987), (c) percentage of all non-
overlapping data (PAND; Parker, Hagan-Burke, & Vannest, 2007), (d) robust 
Pearson’s phi (Phi; Parker et al., 2007), (e) PEM (Ma, 2006), (f) robust improve-
ment rate difference (IRD; Parker et al., 2009), (g) nonoverlap of all pairs 
(NAP; Parker & Vannest, 2009), (h) Kendall’s tau for nonoverlap between 
groups (Taunovlap; Parker, Vannest, Davis, & Sauber, in press), and (i) tau for 
nonoverlap with baseline trend control (Tau-U; Parker et al., in press). Tau-U 
is not represented in Figure 1 due to its use of monotonic trend correction, 
which we have not yet learned to depict graphically.

ECL or “split middle” line. This venerable method (White & Haring, 1980) is 
one of only two in the group of nine which can control positive Phase A trend 
as part of nonoverlap. Nonoverlap is defined as the proportion of Phase B data 
that are above a median slope plotted from Phase A data, but then extended 
into Phase B. White and Haring (1980) hand fit a “split middle” median line to 
Phase A data, but any other trend line, for example, a Tukey tri-split line (Tukey, 
1977), would work as well. White and Haring’s ECL does, however, depend 
on a straight line and makes the assumption of data linearity in baseline. When 
using ECL, a chance-level score is 50%, so the obtained 86% in Figure 1a 
could be described as “36% points beyond chance.” But a more useful stan-
dardized interpretation is possible by rescaling it to a 0 to 100 scale, by the 
formula: Result0-100 = (Result50-100 / .5) – 1. For the same Figure 1a results, 
the transformation is, .86 / .5 – 1 = .72, so when rescaled 0 to 100, the final 
index is 72% nonoverlap. The 72% is more interpretable and therefore more 
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Figure 1. Illustrates eight separate analyses of the same data set using (a) Extended 
Celeration Line (b) PND, (c) PAND, (d) Phi, (e) PEM, (f) IRD, (g) NAP,  
and (h) Taunovlap. 
Note: Tau-U is not represented in this figure.

 at Texas A&M University - Medical Sciences Library on May 25, 2011bmo.sagepub.comDownloaded from 

http://bmo.sagepub.com/


308  Behavior Modification 35(4)

Table 1. Computation Summaries of Nine Nonoverlap Methods

Method Procedure Example analysis

ECL a. Linear trend plotted from Phase A data 
and then extended through Phase B.

b. With transparent ruler, count the 
number of data points in Phase B above 
trend line.

c. Create ratio of Phase B data 
frequencies above line over total Phase 
B data points.

d. Compare this ratio with expected ratio 
of 50%.

 • Given obtained ratio 
9/12, compared with 
expected ratio 6/12.

 • Input to statistical test 
of one proportion.

 • Results: proportion 
9/12 = .75. p = .149.

PND a. Single highest data point in Phase A 
identified (Hi).

b. Transparent ruler helps identify Phase B 
data points above Hi.

c. Ratio of number of data points above Hi 
to Phase B total data points.

 • Given 20 Phase B data 
points, if 17 are above 
Hi, then PND = 17/20 = 
85%.

 • No statistical tests 
available.

PAND a. Minimum number of data points 
removed from Phase A and/or Phase B 
to eliminate all overlap between phases.

b. Ratio of number of data points not 
removed to the total equals PAND.

 • Given Ns for Phase A = 
7 and for Phase B = 11.

 • Given minimum 
removed data points = 5.

 • PAND = (18 – 5) / 
18 = .72.

Phi a. Minimum number of data points 
removed from Phase A and/or Phase B 
to eliminate all overlap between phases.

b. Half of that minimum number is used to 
create two ratios, for Phase A and B.

c. Two ratios are submitted in 2 × 2 table 
to cross-tabs analysis, yielding Phi.

 • Given Ns for Phase A = 
7 and for Phase B = 11.

 • Given minimum 
removed data points = 
5, so half = 2.5.

 • Ratio for Phase A = 2.5 
/ (7 – 2.5), ratio for 
Phase B = (11 – 2.5) / 
2.5.

 • For 2.5 / 4.5 versus 8.5 / 
2.5, Phi = .416.

PEM a. Horizontal median line is drawn through 
Phase A and extended through Phase B.

b. Calculate percentage of Phase B data 
above that extended line = PEM.

c. No statistical analysis is specified, but 
Mood’s median test would be 
appropriate.

 • Given N for 
Phase B = 12.

 • Given Phase A median 
line extended through 
Phase B, splitting nine 
data points above and 
three below.

 • PEM = 9 / 12 = .75.

(continued)
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Table 1. (continued)

Method Procedure Example analysis

IRD a. Minimum number of data points removed 
from Phase A and/or Phase B to eliminate 
all overlap between phases.

b. Half of that minimum number is used to 
create two ratios, for Phases A and B.

c. Two ratios are submitted to a two 
proportions test, yielding risk difference 
(which is IRD).

Note: Identical results as for robust Phi, but 
from a proportions test, not cross-tabs.

 • Given Ns for Phase A = 7 
and for Phase B = 11.

 • Given minimum 
removed data points = 5, 
so half = 2.5.

 • Ratio for Phase A = 2.5 / 
(7 – 2.5), ratio for Phase 
B = (11 – 2.5) / 2.5.

 • Two proportions test 
for 2.5 / 4.5 versus 8.5 / 
2.5, IRD = .416.

NAP a. Enter phase (0/1) and score variables 
submitted to ROC analysis module, 
yielding “empirical AUC” = .875.

or
a. Phase (0/1) and Score variables 

submitted to Mann-Whitney U.
b. Output includes large U and small U.
c. Calculate NAP = UL / (UL + US).

 • Given Phase A data: 3, 5, 4, 
3; Phase B data: 4, 5, 7, 7.

 • From Mann-Whitney: 
UL = 14, US = 2.

 • NAP = 14 / (14 + 2) = 
87.5%.

 • From ROC analysis, 
empirical AUC = 87.5%

Taunovlap a. Number of contrasted pairs (no. of pairs) 
calculated as product of two Phase Ns.

b. Variables for Phase (0/1) and score 
submitted to KRC test.

c. KRC outputs Kendall’s score or “S”.
d. Taunovlap = S / number of pairs.

 • Given raw data:  
Phase A = 3, 3, 4, 5; 
Phase B = 4, 5, 6, 7, 7.

 • Number of pairs = 4 × 5 = 
20.

 • KRC output: S = 16.
 • Taunovlap = S / number of 
pairs = .80.

Tau-U a. Number of contrasted pairs (no. of pairs) 
calculated as product of two Phase Ns.

b. Phase variable coded reverse time order 
for Phase A, and for Phase B, all with the 
next time value.

c. Score and specially coded phase variables 
submitted to KRC test.

d. KRC outputs Kendall’s score or “S”.
e. Tau-U = S / number of pairs.

 • Given raw data: Phase 
A = 3, 3, 4, 5; Phase B = 
4, 5, 6, 7, 7 (same as 
immediately above).

 • Number of pairs = 4 × 5 
= 20.

 • Phase variable coded: 4, 
3, 2, 1; 5, 5, 5, 5, 5.

 • KRC output: S = 11.
 • Tau-U = S / number of 
pairs = .55.

Note: ECL = extended celeration line; PND = percentage of nonoverlapping data; PAND = 
percentage of all nonoverlapping data; Phi = robust Pearson’s phi; PEM = percentage of Phase B 
exceeding the Phase A median; IRD = robust improvement rate difference; NAP = nonoverlap 
of all pairs; ROC = receiver operator characteristic curve; AUC = empirical area under the 
curve; Taunovlap = Kendall’s tau nonoverlap; KRC = Kendall’s rank correlation; Tau-U = 
nonoverlap with baseline trend control.
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usable as a standardized measure of effect. Computation of the ECL and other 
methods are summarized in Table 1.

The valuable ECL method is periodically rediscovered. Most recently pub-
lished as PEM-T (Wolery et al., 2010), the PEM (Ma, 2006) can also be viewed 
as a subtype of ECL. PEM and ECL are identical when there is no Phase A 
trend. Although PEM differs little from ECL, PEM is included in this article 
as a separate analysis.

PND. Although well-documented limitations exist and call for its abandon-
ment (Kratochwill et al., 2010; Parker & Vannest, 2009), PND (Scruggs et al., 
1987) is still widely used and thus included here for comparison. PND is inter-
preted as the percentage of Phase B data exceeding the single highest Phase A 
data point. In Figure 1b, the highest Phase A data point is 26, and five of the 
seven Phase B are above it, so PND = 5 / 7 = 71.4%. PND led the field as the 
earliest pure nonoverlap method. It remains the most widely published and is 
the basis of at least 10 meta-analyses (Scruggs & Mastropieri, 2001). PND 
tends to correlate well with visual judgments (Parker et al., 2007) and is prob-
ably the easiest of all methods to calculate. Hand calculation is straightforward 
on uncrowded data sets with help from a transparent ruler. PND can range from 
0% to 100%, with interpretation guidelines offered by its authors: >70% for 
effective interventions, 50% to 70% for questionable effectiveness, and <50% 
for no observed effect (Scruggs & Mastropieri, 1998). Yet, of all the nonoverlap 
methods, only PND lacks a known sampling distribution, which prevents infer-
ence testing. It also is the only nonoverlap method that emphasizes a single 
score in Phase A. So, the usefulness is limited to those data series where Phase 
A has no positive outliers, as a single high score dictates results.

PAND. This index is conceptualized as the percentage of data remaining after 
removing the fewest data points that would eliminate all overlap. From Figure 1c, 
the fewest data points needing removal to eliminate all overlap equals 2 (circled 
in Figure 1c). PAND (Parker et al., 2007) equals the remaining data, divided by 
the total N: 11 / 13 = 85%. PAND is scaled from 50 to 100, where 50% is chance 
level. To convert to a 0 to 100 scale, ([PAND / .5] – 1), here ([.85 / .5] – 1) = .70. 
PAND was designed to provide nonoverlap with a well-established effect size 
(Phi), though probably not a high priority with many visual analysts. Phi, the 
correlation coefficient for 2 × 2 tables, is the next method described. At its 
inception in 2007, two PAND calculation methods were presented, the first 
based on Excel sorting and the second based on visual scrutiny and hand cal-
culation. The Excel sorting method has proved cumbersome and sometimes 
inexact, so now only the hand-calculation method should be followed.

Phi. Phi (Parker et al., 2007) was intended to legitimize PAND with a well-
reputed effect size. Phi and Phi2 are equivalent to R and R2 for categorical data, 
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calculated from a 2 × 2 contingency table (Sheskin, 2007). Phi itself is not really 
a nonoverlap index but is calculated concurrently with PAND. This article rec-
ommends a “robust Phi” with balanced marginals in a 2 × 2 table, which is 
more stable and not subject to criticism of less-stable Phi values from unbalanced 
2 × 2 tables (Liu, 1980). After identifying the smallest number of data points 
needing removal to eliminate all nonoverlap, Phi calculation begins. Phi is cal-
culated on a 2 × 2 table composed of two ratios, one for each phase. The Phase A 
ratio is as follows: half of all removed data points divided by the remaining (lower) 
Phase A data points. The Phase B ratio is the reverse: the remainder (higher) of 
Phase B data points divided by one half of all removed data points. These two 
ratios are input (as in Figure 1d) to cross-tabulation analysis, yielding Phi and 
its p value. Figure 1d shows both a directly calculated Phi and the recommended 
robust Phi from a balanced 2 × 2 table. For our example data, directly calculated 
Phi = .73 and robust Phi = .69, both similar to the rescaled (0-100) PAND of .70. 
Balanced Phi and PAND are currently used in two meta-analysis of SCRs (Burns, 
Codding, Boice, & Lukito, 2010; Schneider, Goldstein, & Parker, 2008).

PEM. PEM (Ma, 2006) is “the percentage of Phase B data points exceeding 
the median of the baseline phase.” Earlier, we noted that PEM equals White 
and Haring’s (1980) ECL technique when there is no Phase A data trend. The 
middle or median value of Phase A scores are extended into Phase B (see 
Figure 1e). All of the Phase B scores are above this line, so PEM = 7 / 7 = 100%. 
PEM assumes that the median is a good summary for Phase A scores. Although 
its authors do not emphasize inference tests with PEM, the most logical test 
would be Mood’s median test (Siegel & Castellan, 1988). PEM has been field 
tested along with various other indices (Parker & Hagan-Burke, 2007). It 
has also been used as the effect size in meta-analysis of single-case designs 
(Ma, 2009; Preston & Carter, 2009).

IRD. This analysis is conceptualized as the difference in improvement rates 
between Phases A and B (Parker et al., 2009). IRD, commonly employed in 
medical group research under the name “risk reduction” or “risk difference,” 
was an attempt to provide an intuitive interpretation for nonoverlap and to make 
use of an established, respected effect size, P1 – P2, or the difference between 
two proportions. Like Phi, IRD is calculated from a 2 × 2 table. Soon after IRD 
was introduced, it was discovered that when the 2 × 2 table has balanced marginal 
values (see Figure 1f), IRD equaled Phi, which is to say, “robust IRD” equals 
“robust Phi.” Robust IRD is obtained in the same way as robust Phi, by splitting 
the frequency of the overlapping (those needing removal to eliminate all overlap) 
data points between Phases A and B. As for PAND and Phi, IRD begins with 
identifying the minimum number of data points needing removal to elimi-
nate all data overlap between the phases (circled in Figure 1f). In Figure 1e, 
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removing only 2 in Phase B would eliminate all overlap (an alternate solution 
would eliminate 2 in Phase A). Those 2 low data points are termed improved, 
so the calculated improvement rate for Phase B = 5 / 7 = 71% and for Phase A = 
0 / 6 = 0%. IRD is the difference between these two rates: 71% – 0% = 71%. 
The preferable robust IRD is obtained by splitting the number of overlapping 
data points between phases, so instead of 5 / 7 – 0 / 6, the robust improvement 
rates are 6 / 7 – 1 / 6 = 86% – 17% = 69%, identical to robust Phi. Furthermore, 
a robust IRD also equals Cohen’s Kappa and Cramer’s V (Cliff, 1993). The 
universality of robust Phi = robust IRD should appeal to those of us seeking 
greater credibility for SCR data summaries within the broader research com-
munity. Confidence intervals and p values for IRD are commonly available from 
statistics modules testing the difference between two proportions.

IRD is used in several meta-analyses of single-case designs (Davis & Vannest, 
in press; Ganz, Parker, & Benson, 2009; Vannest, Davis, Davis, Mason, & Burke, 
2010; Vannest, Harrison, Temple-Harvey, Ramsey, & Parker, 2010).

NAP. NAP (Parker & Vannest, 2009) is interpreted as the percentage of all 
pairwise comparisons across Phases A and B, which show improvement across 
phases or, more simply, “the percentage of data which improve across phases.” 
Conceptually, NAP is a “complete” nonoverlap index as it individually com-
pares all nA × nB data points. It is calculated as the number of improving or 
positive (Pos) pairs plus half of ties (.5 × Ties), divided by all pairs (Pairs): 
NAP = ([Pos + .5 × Ties] / Pairs). Unlike PAND/Phi and IRD, NAP is directly 
output from raw scores as “empirical area under the curve” (AUC) from a 
receiver operator characteristic curve (ROC) analysis. AUC is calculated by 
most full statistics programs, often in a “diagnostic tests” or ROC module. 
NAP also can be derived by simple calculation from Mann-Whitney U (see 
Table 1).

Although easily calculated by computer software, hand calculation requires 
only a little practice (see Figure 1f). First, the total of paired comparisons 
(Pairs) across phases is calculated as nA × nB = 6 × 7 = 42. Next, the “overlap 
zone” between phases is identified and within that zone only pairs that show 
decline (Neg) and ties (Ties) are counted. These two counts (Neg, Ties) are 
subtracted from number of Pairs to obtain the number of Pos. Figure 1f shows 
within the “overlap zone” Neg = 3 and Ties = 1, so Pos = 42 – 3 – 1 = 38. 
NAP is calculated as [Pos + .5 × no. of Ties) / no. of Pairs] = [(38 + .5) / 
42 = .92]. NAP is scaled from 50% to 100%, where 50% is a chance-level 
result. To rescale NAP to a 0% to 100% scale, use NAP0-100 = 1 – (NAP50-100 
/ .5). For the example data, NAP0-100 = 1 – (.92 / .5) = .84. NAP is used in 
several recent meta-analysis of SCR (Bowman-Perrott et al., 2010; Davis, 
2011; Davis & Vannest, in press).
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Taunovlap. Taunovlap (Parker et al., in press) is similar to NAP, in that it is based 
on all pairwise data comparisons made in a time-forward direction (see Figure 
1h). Each pairwise comparison results in a decision of: Pos, Neg, or Tie, where 
Pos is score improvement from Phase A to B. Tau is the “percentage of nonoverlap 
minus overlap,” whereas NAP was simply “percentage of nonoverlap.” This 
difference is apparent in their respective formulas: Taunovlap = (Pos – Neg) / Pairs, 
whereas NAP = (Pos + .5 × Ties) / Pairs. For the example data (see Figure 1g), 
Taunovlap = (38 – 3) / 42 = .83.

As is the case with NAP, Taunovlap exists on a 50% to 100% scale, with 50% 
equaling chance-level results. Taunovlap can be rescaled from 0% to 100% using 
the formula given earlier: TAU0-100 = (Tau50-100 / .5) – 1. For the example data, 
Tau0-100 = (.83 / .5) – 1 = .66. The equivalence formulas for Taunovlap and NAP 
are (a) NAP = Taunovlap + ([no. of Neg + .5 × Ties] / Pairs) and (b) Taunovlap 
= NAP – [(no. of Neg + .5 × no. of Tie) / no. of Pairs].

Tau is obtained from either Kendall’s rank correlation (KRC) or from the 
Mann-Whitney U test, but both require minor hand calculations (Newson, 
2001). To use KRC, dummy code “Phase 0/1” and then enter “phase” and 
“score” variables. Because KRC is not designed for dummy-coded variables, 
the Tau value output will not be correct. But the standard error, p value, and 
Kendall’s “S” (or “Score”) will be correct. So, Taunovlap needs to be hand 
calculated as follows: Taunovlap = S / Pairs. The denominator is obtained by 
multiplying the two Phase Ns: Pairs = NPhase A × NPhase B. As a side note, S = 
Pos – Neg.

To obtain Taunovlap from the Mann-Whitney U test, data are input normally: 
phase (dummy coded 0/1) and a score and variables. Alternatively, some statistics 
programs require two score columns, without a phase variable. The Mann-
Whitney test outputs larger (UL) and smaller (US) values for U. A ratio involving 
these two equals Taunovlap, (UL – US) / (UL + US) = Taunovlap. For our example 
(UL – US) / (UL + US) = (38.5 – 3.5) / (38.5 + 3.5) = 35 / 42 = .83 = Taunovlap. The 
next section extends Taunovlap to control of baseline trend.

Tau-U. Tau-U (Parker et al., in press) extends Taunovlap to control for undesir-
able positive baseline trend (monotonic trend). Monotonic trend is the upward 
progression of data points in any configuration, whether linear, curvilinear, or 
even in a mixed pattern of “fits and starts.”

For Tau-U, score and a specially-coded phase variable are submitted to a 
KRC module, as for Taunovlap. But the phase coding is different: for Phase A, 
input is a reverse time sequence and for Phase B, input is Phase B’s first time 
value, repeatedly. For our example, the phase coding is 6, 5, 4, 3, 2, 1 / 7, 7, 
7, 7, 7, 7, 7. From the KRC analysis, the Tau output will not be accurate but 
Kendall’s S will be accurate, as will be the standard error and p value. Tau-U 
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must be hand calculated as S / number of Pairs. As shown earlier, the denomina-
tor is the product of the two Phase Ns: number of Pairs = NPhase A × NPhase B = 
6 × 7 = 42 The KRC analysis yields S = 31, so Tau-U = S / number of Pairs = 31 / 
42 = .74. Note that .74 is smaller than Taunovlap = .83, reduced because of removal 
of the effects of Phase A trend. Described elsewhere at length (Parker et al., in 
press), this baseline trend control has the advantage of being conservative, 
avoiding extreme changes possible in controlling for linear trend.

Tau-U and ECL are the only two methods capable of controlling for Phase 
A trend. A major difference between the two is that ECL controls linear trend, 
whereas Tau-U controls monotonic trend. Also, ECL yields “percentage of data 
overlapping an extended median,” a less intuitive summary index than Tau-U’s 
“non-overlap after controlling for Phase A trend.” Finally, the statistical test 
from KRC for Tau-U is more powerful than the binomial test used for ECL.

Nonparametric “dominance” statistics. After PAND and IRD were published, 
commonalities were noted with established nonparametric statistics and that 
recognition led to the development of NAP. In fact, the method of “all pairwise 
score comparisons” is the hallmark of a group of nonparametric statistics with 
many equivalent names: “dominance,” “noninferiority,” “stochastic superiority,” 
“probabilistic statistic,” “P1 – P2,” and even “nonoverlap” (Huberty & Lowman, 
2000). Dominance can be defined as the probability that a randomly selected 
score from one group (phase) will exceed that from a second group (phase). Key 
publications exploring dominance statistics are Cliff (1993); Grissom and Kim 
(2005); Huberty and Lowman (2000); Acion, Peterson, Temple, and Arndt (2006); 
D’Agostino, Campbell, and Greenhouse (2006); and Delaney and Vargha (2002).

Equivalence of established dominance statistics with nonoverlap in SCR 
brings greater credibility and a track record of methodological publications 
(see prior references). These include studies of bias, power, and precision, 
which show surprisingly strong results for tests such as Mann-Whitney U and 
KRC, both of which are based on the “S” distribution (Cliff, 1993; Huberty 
& Lowman, 2000; Wilcox, 2010). For example, Monte Carlo studies show 
their power to be 91% to 95% that of parametric t tests or ordinary least squares 
regression. This power estimate is for well-behaved data (normally distributed 
and with constant variance), which is not often available in SCR. For ill-
behaved, nonnormal, skewed data, the nonparametric tests’ power can exceed 
115% that of the standard parametric tests. This finding should increase the 
attractiveness of nonoverlap tests for typical SCR data.

Typical Nonoverlap Values
Typical nonoverlap values from published SCR literature are available from 
various sources: (a) guidelines by authors, who often apply their techniques to 
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dozens or even hundreds of studies informally; (b) field trials with a goal of 
identifying typical magnitudes; and (c) meta-analyses. To permit accurate com-
parisons, however, these guidelines should be calculated from the same sample 
data. Table 2 presents such a summary from a convenience sample of 200 AB 
contrasts from more than 60 articles published in more than 15 different journals. 
The sample was collected without regard to effectiveness of interventions. Two 
thirds of the studies’ authors interpreted graphed results as indicating interven-
tion success. White and Haring’s (1980) ECL and Tau-U were not included 
because among the nine indices only they considered Phase A trend, so would 
not be comparable to the other seven. However, the PEM index was included, 
which is identical to ECL in the absence of baseline trend. Separate visual-
analysis ratings from three experienced raters (none were authors of the studies) 
classified 37% of the graphs as demonstrating small or negligible change, 22% 
as showing moderate change, and 40% as constituting a large amount of change.

Table 2 contains distributions for seven of the nine nonoverlap indices from 
evaluation of these 200 data series. To permit direct comparison, all indices 
were reset to a 0% to 100% scale by the formula ([nonoverlap / .50] – 1). The 
most dissimilar of the group is PEM, which scored 50% of the data sets as 
having perfect nonoverlap and more than 10% as having chance-level overlap. 
Thus, it could not discriminate among most of the data sets. No index but Phi 
could discriminate among the largest 10% of effects, but four (PAND, IRD, 
Phi, and Taunovlap) could discriminate among the lowest 10% of effects. The 
most similar distributions were from PND, NAP, and Taunovlap.

With the exception of PEM, we can say that the median nonoverlap of 
published studies is in the range of 63% to 72%. Other rough ranges of percentile 

Table 2. Percentile Distributions for the Seven Effect-Size Indices

Effect-size 
indices

Percentile rank

10th 25th 50th 75th 90th

PND .00 .25 0.67 0.94 1.00
NAP (0-100) .00 .38 0.68 0.96 1.00
Taunovlap (0-100) .00 .36 0.63 0.93 1.00
PEM (0-100) .00 .50 1.00 1.00 1.00
PAND (0-100) .20 .38 0.64 0.86 1.00
Phi (0-100) .26 .49 0.72 0.83 0.95
IRD (0-100) .37 .48 0.72 0.90 1.00

Note: PND = percentage of nonoverlapping data; NAP = nonoverlap of all pairs; Taunovlap = 
Kendall’s tau nonoverlap; PEM = percentage of Phase B exceeding the Phase A median; 
PAND = percentage of all nonoverlapping data; Phi = robust Pearson’s phi; IRD = robust 
improvement rate difference.
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markers are 10th percentile, 0% to 37%; 25th percentile, 25% to 49%; 75th 
percentile, 0.83 to 0.96; and 90th percentile, 0.95 to 1.00. None of these dis-
tributions include deterioration effects, which rarely occurred in published data.

Combining nonoverlap indices across multiple data series. A simple contrast of 
Phase A versus Phase B might be sufficient for a limited purpose, but published 
studies more often include several contrasts within a single design. In these 
cases, we may seek a single summary for the entire design. Combining Multiple 
A versus Multiple B contrasts for multiple baseline designs was described for 
PAND and Phi (Parker et al., 2007). But a more general approach is to use 
meta-analysis software to combine individual effects within a “fixed effects” 
model. We have found five free meta-analysis programs available for Internet 
download, of which the most useful for nonoverlap indices is WinPepi (Abramson, 
2010; http://www.brixtonhealth.com/pepi4windows.html). WinPepi was built 
for medical researchers, who frequently use nonparametric analyses, so it offers 
a large number of nonparametric analyses. Simple proportions or percentages 
can be entered into WinPepi, each with their standard errors. WinPepi accepts 
IRD (two proportions) or a single proportion, and outputs an omnibus nonoverlap 
score, along with confidence intervals. The confidence intervals are narrower 
than for any of the individual phase contrasts because of the increased data 
points from all contrasts. Various weighting schemes are available for combin-
ing individual contrasts, but a standard in meta-analysis is weighting by the 
inverse of the standard error of each contrast.

Conclusions
This article sought to clarify similarities and differences among nine indices of 
nonoverlap for SCR data. The past half dozen years have seen a great increase 
in work toward better methods for analyzing SCR data. It is a priority of many, 
including the federal government’s IES, that SCR research become as rigorous 
and as valued as group research, to support evidence-based interventions (IES, 
2010). Nonoverlap techniques require neither interval scales nor well-conforming 
data nor large data sets, which fits well with data typically produced in SCR 
research. Nonoverlap is based on the relative standing of individual data points, 
rather than means, medians, or even modes. In addition, one nonoverlap method 
(Tau-U) includes trend without requiring that the trend be linear.

Researchers should be mindful of the differences among nonoverlap tech-
niques. First, although most techniques (PND, PAND/Phi, IRD, PEM, NAP, 
Taunovlap) cannot correct positive baseline trend, two (ECL and Tau-U) can do 
so. But the trends they control are quite different. ECL controls for linear trend, 
which is assumed to continue unabated without intervention. This assumption 
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has been challenged (Scruggs & Mastropieri, 2001). In contrast, Tau-U controls 
monotonic trend, which is the tendency for scores to increase over time, in 
any configuration. Furthermore, Tau-U’s trend control is considerably more 
conservative than in ECL, as its effect is limited by Phase A length.

Another assumption made by only two methods (ECL and PEM) is that the 
median is a good summary of Phase A. This assumption is appropriate in cases 
where data show central tendency. But where data are bimodal, heavily skewed, 
or otherwise lacking in central tendency, reliance on the median (or mean) can 
distort results (Wilcox, 2010). Nonoverlap methods are more flexible in not 
relying on central tendency.

There are other important differences. Thirty years ago, nonoverlap techniques 
were regarded as a method to augment visual analysis, whereas now all nonoverlap 
methods but one (PND) are based on established sampling distributions. Therefore, 
confidence intervals and p values are available, so inference testing can become 
routine. Inference testing is especially important with short data series.

Adequate statistical power is a challenge in SCR with short data series, and 
the seven nonoverlap methods that permit inference testing are not equal in 
statistical power. Insufficient statistical power results in an inability to reliably 
identify smaller effects. Inadequate power also produces nonoverlap results 
with low precision, as shown by very large confidence intervals around obtained 
scores. Lowest power is afforded by ECL (binomial test) and PEM (Mood’s 
median test). Next in statistical power is Phi (chi-square test) and IRD (two 
proportions test). The greatest statistical power is available from NAP (AUC 
test), Taunovlap, and Tau-U (Kendall’s S test).

From a sample of 200 published AB designs, distribution similarities were 
noted among all seven of the methods not involving trend. With the exception 
of PEM, there was basic agreement on percentile markers. Mean scores for 
the sample averaged 63% to 72%, and at the 75th percentile scores were 83% 
to 96%. Greatest similarity was among PND, NAP, and Taunovlap. What may 
impress readers most is the magnitude of these nonoverlap values. Nonoverlap 
scores are considerably larger than scores from other parametric or nonpara-
metric 0 to 1 scaled summaries. Smaller scores were obtained from Phi, which 
is not a nonoverlap index, though based on nonoverlap.

An attribute shared by all indices with the exception of Phi is insensitivity 
to results at the top end (here the largest 10%) of the distribution. For PEM, 
insensitivity was at a high level, that is, unable to distinguish among 50% of 
the sample. But insensitivity to even 10% would be a marked disadvantage if 
one were attempting to compare two successful interventions. This insensitivity 
is inherent in nonoverlap calculations, and the only apparent remedy seems to 
be to expand nonoverlap to include trend also. Though it could not be included 
in Table 2 because of slope corrections, Tau-U sensitivity exceeds all others.
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Besides their differences, some of the nine indices are markedly similar or 
even identical. It was noted that ECL (White & Haring, 1980) is identical to 
the new PEM-T (Wolery et al., 2010) and that PEM (Ma, 2006) is subsumed 
under ECL. Also noteworthy is the close similarity of PAND, Phi, and IRD, 
all computed from a 2 × 2 matrix. In a balanced 2 × 2 matrix, Phi and IRD are 
the same. Also, quite similar are NAP and Taunovlap, as they are calculated the 
same way, except that Taunovlap subtracts nonoverlapping data, whereas NAP 
does not. They also differ in how ties found in paired comparisons are treated.

The identity of NAP and tau with the group of nonparametric “dominance 
statistics” offers new validation for nonoverlap as an effect size. The visual 
analysis practice of judging nonoverlap is now validated and supported by 
respected tests such as the Mann-Whitney U, KRC, and the ROC analysis. 
These dominance tests have equivalence formulas, and through those formulas, 
nonoverlap as a concept can be better understood and expanded. These con-
nections are leading to an integrated, nonparamentric  measure of nonoverlap 
and trend, as exemplified by Tau-U. Nonoverlap methods, as other SCR ana-
lytic techniques, are improving rapidly and in a few years may show substantial 
improvements.
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